NEW YORK UNIVERSITY

CHEMISTRY DEPARTMENT

UNIVERSITY HEIGHTS

Contract No. NSG 76-60

Summary of work done in the period

Movember 1, 1964 to April 30, 1965

N65-85.771

(ACCESSION NUMBER)

(PAGES)

(NASA CR OR TMX OR AD NUMBER)

(CATEGORY)

THEORETICAL STUDY OF ATOMIC AND MOLECULAR GASES
AND THEIR REACTIONS
IN THE UPPER ATMOSPHERE

Submitted to the National Aeronautics and Space Administration, Washington, 25, D. C. The report contains a brief summary of the work done during the period November 1, 1964 to April 30, 1965.

Roop C. Sahni Project Director

PERSONNEL

Dr. R. C. Sahni

Dr. C. Donald Ia Budde

Dr. Franz-Joseph Heinen

Dr. E. J. De Lorenzo

Dr. D. C. Jain

Mr. B. C. Sawhney

Mr. O. P. Anand

Mr. M. D. Sawhney

Chief Investigator and Project Director

Research Scientist

Assistant Research Scientist

Assistant Research Scientist

Assistant Research Scientist

Assistant Research Scientist

Research Assistant

Research Assistant

INTRODUCTION

In the previous report it was stated that we had extended the computer programs to include 3s and 3p functions along with 1s. 2s and 2p functions for the calculation of the electronic wave functions and total energies of diatomic molecules. We also stated in that report that most of the work done upto date was applied to the equilibrium distances of the ground, ionized and excited states of distomic molecules. We have now extended this work to a number of internuclear distances of these molecules to obtain the potential energy curves. Furthermore, we have also built up programs where, in addition to the usual treatment, we have varied the screening constants of the basic function to obtain the best ICAO MO's. So far the best ICAO MO work is confined to 1s, 2s and 2p functions. Attempt is now being made to include 3s, 3p and 3d functions in the calculation of the best ICAO MO's. We hope to describe these results in the coming report. The work during the last six months got a special impetus due to time allotted to us on IBM 7094 computer of the Institute for Space Studies, 475 Riverside Drive, New York, New York. The excellent facilities and cooperation of the personnel of the Institute have made it possible for us to make good progress in this work.

Roop C. Sahni

Work carried out during the above period can be given under the following headings:

- (1) Computation of the Wave Functions and Total Energies of the Different Electronic States of Isoelectronic N₂ and CO Molecules with A View To Predict Their Equilibrium Distances.
- (2) Prediction of the Ground, Ionized and Excited States of NF Molecule From the Quantum Mechanical Treatment of the Isoelectronic O₂ and NF Molecules.
- (3) Development of the Computer Programs To Calculate the Best ICAO MO's for Homopolar Diatomic Molecules.
- (4) Development of the Computer Programs To Calculate the Best ICAO MO's for Heteropolar Diatomic Molecules.
- (5) Development of the Semi-empirical Procedures Such As R-K-R Method To Compute Potential Energy Curves of Diatomic Molecules.
- (1) COMPUTATION OF THE WAVE FUNCTIONS AND TOTAL ENERGIES OF THE DIFFERENT STATES OF THE ISOBLECTRONIC N₂ AND CO MOLECULES WITH A VIEW TO CALCULATE THEIR EQUILIBRIUM DISTANCES

 by B. C. Sawhney, O. P. Anand and R. C. Sahni

The automatic homo- and betero programs have been used to calculate the wave functions and total energies of six electronic states of H₂ and seven states of CO at a number of internuclear distances to calculate their equilibrium distances. The programs used Slater orbitals as basic functions. The calculated equilibrium distances are the first approximation to the more exact work, where the screening constants are varied, now in progress. The computed energy values are given in Table II and Table III and the calculated equilibrium distances from the above data are given in Table III and Table IV along with the observed values.

PREDICTION OF THE GROUND, IONIZED AND EXCITED STATES OF THE NF MOLECULE FROM THE QUANTUM MECHANICAL TREATMENT OF THE ISOELECTRONIC O₂ AND NF MOLECULES

by R. C. Sabni

The automatic homo and hetero programs have been used to calculate the wave functions and total energies of the isoelectronic O_2 and NF molecules and thus calculate their equilibrium distances. NF molecule has not been so far detected experimentally. Since NF is isoelectronic with O_2 molecule, the four states of NF, corresponding to those of O_2 molecule, have been computed. The nomenclature and configuration of the states of NF are as follows:

table i notal energies of different states of n_2 molecule at various internollear distances

ņ

			$\alpha = 6.6675 \beta$	β = γ = 6 = 1.95		
04	M L M	3 E 2 E	3 11 2 2 11 12 12 12 12 12 12 12 12 12 12	N2 3 II	N+ 2 S	N+ 22 Lu
	2.0675	2,4435	2.1699	2.2910	2.1094	2.0315
1.90	-108.50664330	-108.14582634	-108.01993752	-108.17588425	-107.93795967	-107.78673363
1.95	-108.53651524	-108.20601940	-108.05690098	-108.22309208	-107.97514248	-107.81339931
8.8	-108.55782509	-108.25635147	-108,08470917	-108.26107407	-108.00359535	-107.83136559
20.03	-108.57176781	-108.29803848	-108.10457802	-108.29107285	-108.02455139	-107.84182167
2,10	-108.57941532	-108.33224010	-108.11762142	-108.31420422	-108.03909779	-107.84589291
2.15	-108.58167553	-108.35986996	-108,12478161	-108,33141232	-108.04816914	-107.84448910
2.20	-108.57934761	-108.38181686	-108,12689400	-108.34355545	-108.05259895	-107.83843040
800	-108.57315159	-108,39881802	-108.12469136	-108.35136890	-108.05310917	46464828.701~
2.30	-108,56365585	-106.41148567	-100.11878967	-108.35544968	-108.05029297	-107.81511116
2.35	-108.55139446	-108.42039585	-108.10974216	-108.35637760	-308.04468250	-10136967.70t
2.10	-106.53680134	-108.42603970	-108.09802151	-10°, 35460949	-108.03675747	-107.78052998
2,45	-108.52032661	-108.4288841	-108.08408356	-108.35062021	-108.02693748	-107.76018524
2.50	-108.5024304	-108,42924881	-10°.06823254	-108.3446931	-108.01551723	-107.73824596
2.55	-108.48230920	-108.42751884	-108.05084324	-108.33721066	-108.00286388	-107.71506596
2,60	-108.46249199	-108,42391586	-100.03211498	-108.32836246	-107.98914433	-107.69085979
2.0675	-108.57510948	-106.31080437	-108.10986519	-108.29988861	-106.03031731	-107.84392546
2.4435	-108.52298260	-108.42862,19	-108.08627224	-106.35072613	-108.02801609	-107.76351261
2.1699	-108.58127213	-108.36924034	-108.1261 8828	-106.36681107	-108.05045509	-107.84259796
2.2910	-108.56557846	-108.40950012	-106.12010384	-108.35496712	-106.05101776	-107.81772614
2,1094	-108.58020973	-108.33788681	-108.11937714	-108.31785011	-108.04117966	-107.84600639
2.0315	-108.56740284	-108.28355122	-100.09807873	-108.28002180	-106.01760006	-107.83875751

TABLE II - TOTAL ENERGIES OF DIFFERENT STATES OF CO MOLECULE AT WARIOUS INTERNUCLEAR DISTANCES

B 2 C (co+)	-111.42243862 -111.45487213 -111.47964859	-111.49787331	-111.51859188	-111.52353287 -111.52169418	-111.51773167		-111.50533485	-111.48933601		-111.47183132	-111.46261311	-111.45306969	-111.44330311	111.43299675
А ² п (со ⁺)		-111.78398895	-111.80711269 -111.82560539	-111.84011650 -111.85105324	-111.85912228	-111.86448479	-111.86773300 -111.86907482	91642393*111-	-111.86703491	-111.86421871	-111.86032772	-111.85550777	-111.8503997	-111.84469986
x 2 x (co ⁺)	-111.78087902 -111.81227303 -111.83583450	-111.85273170 -111.86396408	-111.87039652 -111.87287712	-111.87201118 -111.86835098	-111.86255360	-111.85496330	-111.84608641 -111.83613110	-111.82550240	-111.81435966	-111.80296421	-111.79129505	-111.77958488	-111.76816273	-111.75688362
c ² Σ (co ⁺)	41256897.011-	-110.83468315 -110.86468315	-110.89357662 -110.91785812	-110.93803787	-110.96789074	-110.97831154	-110.98631859 -110.99185658	-110.99520874	-110.99636650	-110,99544621	-110.99233150	-110.98709869	-110.98032475	-110.97213364
x 1 2 (co)	-115.23902798 -112.2946647 -112.31681442	-112.33207321	-112.34640408	-112.34418869	-112.32978153	-112.31918526	-112,20630193	-112.27814102	-112.26219940	-112.24554920	-112.22813042	-112.21033096	-112.19238758	112,17424583
3 A (co)	-111.89608574	-111.99008560	-112.05714130 -112.08272362	-112.10388184	-112.13495731	-112.14583397	-112.15419960	-112.16435432	-112.16669083	-112.16752929	-112.16697788	-112.16510201	-112.16249371	-112,15889549
3 п (со)	-111.974.94603 -112.01778221 -112.05291748	-112.08070755 -112.10238266	-112,11864948	-112.13831711 -112.14887376	-112.14478207	-112,14436422	-112.14194870	-112.13303375	-112.12682152	-11e.11972904	-112,11221027			
œ	1.95	8.9	3. % 8. %	છે. જે જે	2.35	2.5	9 9 15 8	2.55	2.60	2.65	2.3	2.75	2.80	2.63

TABLE III
EQUILIBRIUM DIATANCES (Re) OF THE VARIOUS ELECTRONIC
STATES OF N₂ MOLECULE IN ATOMIC UNITS (a.u.)

	EQU	ILIBRIUM DISTANCE	
STATE	CALCULATED	OBSERVED	o/o error
n ₂ x ¹ Σ _g ⁺	2.15	2.0675	3.99°/o
A ³ Σ _u +	2.48	2.4435	1.49°/o
3 _{II u}	2.20	2.1699	1.39°/o
3 II g	2.34	2.2910	2.14 ⁰ /o
x 5 Σ+	2.23	2.1094	5.72°/0
Β ² Σ _u +	2.11	2.0315	3.86°/e

TABLE IV
EQUILIBRIUM DISTANCES OF THE VARIOUS ELECTRONIC STATES
OF CO MOLECULE IN ATOMIC UNITS (a.u.)

	EQUI	LIBRIUM DISTANCE	
STATE	CALCULATED	OBSERVED	o/o KEROR
CO X 1 Σ+	2.18	2.132	2.25%
, a 3 II	2.365	2.2853	3.49°/o
a 3 Δ	2.65	2.5888	2.36°/o
co ₊ x ₅ z ₊	2.21	2.1072	4.870/0
A 2 II+	2.51	2.3502	6.79°/o
B 2 E+	2.24	2.2085	1.420/0
c ₅ Σ ₊	2.60		

The computed total energies of the states of 0_2 are given in Table V and those of NF in Table VI. The calculated equilibrium distances from the above data are given in Table VII for states of 0_2 molecule along with observed data.

The predicted equilibrium distances of the states of NF along with excitation and ionization energies are given in Table VIII. The above results are preliminary. A more complete study using the best MO's (where both the linear coefficients and orbital exponents are varied) is under way. The complete results will be described in the next report.

(3) DEVELOPMENT OF THE COMPUTER PROGRAM FOR THE VARIATION OF THE SCREENING CONSTANTS OF THE 1s, 2s AND 2p ATOMIC ORBITALS TO OBTAIN BEST LCAO MO'S FOR THE DIFFERENT ELECTRONIC STATES OF DIATOMIC HOMOPOLAR MOLECULES by R. C. Sabni and C. D. La Budde

built up which computes wave functions and total energies of homopolar diatomic molecules. This program can compute six to seven states of the same molecule in 3 - 4 minutes in a single rum. The program uses fixed screening constants as an input data. It is usual to use Slater screening constants. In order to get the best wave functions and total energies it is necessary to vary the screening constants to optimize the total energy. Such a program has been constructed and a number of states of N₂ and O₂ have been computed. The total energies of these states are given in Table IX along with those computed by using only Slater's screening constants. In all cases best ICAO MO's give better results.

(4) DEVELOPMENT OF THE COMPUTER PROGRAMS FOR THE VARIATION OF THE SCREENING CONSTANTS OF THE 1s. 2s AND 2p ATOMIC ORBITALS TO OBTAIN BEST ICAO MO'S FOR THE DIFFERENT ELECTRONIC STATES OF DIATOMIC HETEROPOLAR MOLECULES by C. D. In Budde and R. C. Sahmi

An 'auto vary' program has been built up which varies the screening constants of the different atomic orbitals of heteropolar molecules till the optimized energy is obtained. This program is more complicated than a similar program for homopolar molecules. This program has been used to calculate the

Table v total energies of states of ${\rm o_2}$ molecule at various r

,	$\alpha = 7.6526$	$\beta = \gamma = \delta = 2.5$	275	ŧ
R	ο ₂ ³ Σ ⁻ g	ο ₂ 1 Δ	о ₂ 4 п	o ₂ 2 _{II}
2.00	-149.02007866	-148.93554115	-148.48109627	-148.66397476
2.05	-149.04732704	-148.96336937	-148.53122520	-148.68243599
2.10	-149.06742668	-148.98403314	-148.57303238	-148.69430542
2.15	-149.08137894	-148.99849701	-148.60758781	-148.70056343
2.20	-149.09014702	-149.00779533	-148.63587379	-148.70213509
2.25	-149-09440804	-149-01255989	-148.65863800	-148.69966125
2.30	-149 .0 9491158	-149.01353455	-148.67663765	-148.69385719
2.35	-149.09214592	-149.01122856	-148.69046211	-148.68519783
2.40	-149.08661842	-149.00615120	-148.70061684	-148.67414665
2.45	-149.07877731	-148.99873161	-148.70763397	-148.66114235
2.50	-149.06890488	-148.98927879	-148.71180344	-148.64645576
2.55	-149.05746460	-148.97822571	-148.71364784	-148.63051987
2.60	-149.04456902	-148.96571732	-148.71332932	-148.61343002
2.65	-149.03048897	-148.95200157	-148.71114159	-148.59544945
2.70	-149.01558113	-148.93743706	-148.70748901	-148.57689476
2.26170	-149.09510422	-149.01355362	-148.67054176	-148.69631004
2,29705	-149.09498596	-149.01357651	-148.67571831	-148.69429779
2.12163	-149.07416344	-148.99098587	-148.58880615	-148.69765663
2.61025	-149.04183960	-148.96305084	-148.71307755	-148.60987091

TOTAL ENERGIES OF STATES OF NV AT VARIOUS R

Table VI

INTERNUCLEAR		TOTAL ENERGIES	(ATOMIC UNITS)	
Distance (R) (Atomic Units)	MP X 3 E	MF 1 A	MF ^{+ 2} II	MP+ 4 II
2.00	-153.0760	-152.9849	-152.7468	-152.4587
2.20	-153.1754	-153.0842	-152.8141	-152.6454
2,25	-153.1877	-153.0965	-152.8194	-152.6773
2.30	-153.1963	-153-1051	-152.8214	-152.7048
2.35	-153.2011	-153.1101	-152.8197	-152.7282
2.40	-153.2044	-153-1135	-152.8175	-152.7484
2.45	-153.2046	-153-1138	-152.8121	-152.7653
2 .50	-153.2026	-153.1120	-152.8049	-152.7793
2.55	-153.1991	-153.1087	-152.7965	-152.7911
2.60	-153.1939	-153.1039	-152.7866	-152.8007
2.80	-153.1619	-153.0740		-152.8224
2.85	-153.1508	-153-0638		-152.8235
2.90	-153-1398	-153.0538		-152.8248
2.95		-153.0432		-152.8242
3.00		-153.0329		-152.8235

NEW YORK UNIVERSITY
CHEMISTRY DEPARTMENT
UNIVERSITY HEIGHTS
Contract No. NSG 76-60
Summary of work done in the period
Movember 1, 1964 to April 30, 1965

THEORETICAL STUDY OF ATOMIC AND MOLECULAR GASES AND THEIR REACTIONS IN THE UPPER ATMOSPHERE

Submitted to the National Aeronautics and Space Administration, Washington, 25, D. C. The report contains a brief summary of the work done during the period November 1, 1964 to April 30, 1965.

Roop C. Sahni Project Director

Ruch (Salini

PERSCRINEL

Dr. R. C. Sahni

Dr. C. Donald La Budde

Dr. Franz-Joseph Heinen

Dr. E. J. De Lorenzo

Dr. D. C. Jain

Mr. B. C. Sawhney

Mr. O. P. Anand

Mr. M. D. Sawhney

Chief Investigator and Project Director

Research Scientist

Assistant Research Scientist

Assistant Research Scientist

Assistant Research Scientist

Assistant Research Scientist

Research Assistant

Research Assistant

INTRODUCTION

In the previous report it was stated that we had extended the computer programs to include 3s and 3p functions along with 1s, 2s and 2p functions for the calculation of the electronic wave functions and total energies of diatomic molecules. We also stated in that report that most of the work done upto date was applied to the equilibrium distances of the ground, ionized and excited states of diatomic molecules. We have now extended this work to a number of internuclear distances of these molecules to obtain the potential energy curves. Furthermore, we have also built up programs where, in addition to the usual treatment, we have varied the screening constants of the basic function to obtain the best ICAO MO's. So far the best ICAO MO work is confined to is, 2s and 2p functions. Attempt is now being made to include 3s, 3p and 3d functions in the calculation of the best ICAO MO's. We hope to describe these results in the coming report. The work during the last six months got a special impetus due to time allotted to us on IBM 7094 computer of the Institute for Space Studies, 475 Riverside Drive, New York, New York. The excellent facilities and cooperation of the personnel of the Institute have made it possible for us to make good progress in this work.

Roce C. Sahni

Work carried out during the above period can be given under the following headings:

- (1) Computation of the Wave Functions and Total Energies of the Different Electronic States of Isoelectronic N₂ and CO Molecules with A View To Predict Their Equilibrium Distances.
- (2) Prediction of the Ground, Ionized and Excited States of NF Molecule From the Quantum Mechanical Treatment of the Isoelectronic O₂ and NF Molecules.
- (3) Development of the Computer Programs To Calculate the Best LCAG MO's for Homopolar Diatomic Molecules.
- (4) Development of the Computer Programs To Calculate the Best LCAO MO's for Heteropolar Diatomic Molecules.
- (5) Development of the Semi-empirical Procedures Such As R-K-R Method To Compute Potential Energy Curves of Diatomic Molecules.
- (1) COMPUTATION OF THE WAVE FUNCTIONS AND TOTAL ENERGIES OF THE DIFFERENT STATES OF THE ISCRIECTRONIC No AND CO MOLECULES WITH A VIEW TO CALCULATE THEIR EQUILIBRIUM DISTANCES

 by B. C. Sawhney, O. P. Anand and R. C. Sahni

The automatic homo- and hetero programs have been used to calculate the wave functions and total energies of six electronic states of N₂ and seven states of CO at a number of internuclear distances to calculate their equilibrium distances. The programs used Slater orbitals as basic functions. The calculated equilibrium distances are the first approximation to the more exact work, where the screening constants are varied, now in progress. The computed energy values are given in Table II and the calculated equilibrium distances from the above data are given in Table III and Table IV along with the observed values.

(2) PREDICTION OF THE GROUND, IONIZED AND EXCITED STATES OF THE NF MOLECULE FROM THE QUANTUM MECHANICAL TREATMENT OF THE ISOELECTRONIC O₂ AND NF MOLECULES

by R. C. Sahni

The automatic homo and hetero programs have been used to calculate the wave functions and total energies of the isoelectronic $\mathbf{0}_2$ and NF molecules and thus calculate their equilibrium distances. NF molecule has not been so far detected experimentally. Since NF is isoelectronic with $\mathbf{0}_2$ molecule, the four states of NF, corresponding to those of $\mathbf{0}_2$ molecule, have been computed. The nomenclature and configuration of the states of NF are as follows:

TOTAL RUKRGIES OF DIFFERENT STATES OF N2 MOLECULE AT VARIOUS INTERNUCLEAR DISTANCES TABLE I

8		3 C 2 C C C C C C C C C C C C C C C C C	M ==	E 89	# 2 ×	M+ 2 m
The second personal parents are not a second personal per			.a	en Fro	20 E	a Cu
The second secon		2.4435	2.1699	2.2910	2.1094	2.0315
The state of the s	330	-108.14582634	-100.01993752	-108.17588425	-107.93795967	-107.78673363
Married Statement provided principles, so come previous provided to the provided physical provided pro	524	-108.20601340	-108:05690098	-108.22309208	-107.97514248	-107.81339931
property institute and provided property property provided provide	503	-108.25635147	-106,08470917	-108.26107407	-108.00359535	-107.83136559
property provided between providing and supplied the second provided provided provided provided provided provided	181	-106.29803848	-108,10457802	-108.29107285	-108,02455139	-107.84182167
mental parametral processor present present parameter processor processor processor processor processor processor	532	-108.3322k010	-108.11762142	-108.31420422	-108.03909TF9	-107.84589291
manufaction of parameter interested parameter parameter presented presented presented parameter of parameters	553	-108.35986996	-108.12478161	-108.33141232	-108.04816914	-107.84448910
processed processed increased between processed processed between processed between	761	-108.38181686	-108,12689400	-108.34355545	-108.05259895	-107.83843040
manuscript inter-control television interested interested property successively property	159	-108,39881802	-108.12469196	-108.35136890	-108.05310917	4646488-701-
attraction between treasment between the party of the party	283	-106.41148567	-108.11878967	-108.35544968	-108.05029297	-107.81511116
thereign interested temperated desprised surprising passenge	~	-108.42039585	-106.10974216	-106.35637760	-108.04468250	79188867.701-
remarks to the first the same of the same	134	-108,42603970	-108.09802151	-106.35460949	-108.03675747	-107.78052998
	1 99	-108.42888641	-108.08408356	-108.35062021	-108.02693748	-107.76018524
	శ్ల	-106.42924881	-10°.06823254	-108.34469891	-108.01551723	-107.73824596
	086	-108.42751884	-108.05084324	-108.33721066	-108.00266388	-107.71506596
	661	-108.42391586	-108.03211498	-108.32836246	-107.98914433	-107.69085979
2.0675 -108.57510948	846	-106.31080437	-108.10986519	-108.29988861	-106.03031731	-107.84392548
2.4435 -108.52298260	 98	-108.42868319	-108.08627224	-108.35072613	-108.02801609	-107.76351261
2.1699 -108.58127213	ध	-108.36924934	-108.12618828	-108.36681107	-108.05045509	-107.8425979c
2.2910 -108.56557846	98	-108,40950012	-106.12010384	-108.35496712	-106.05101776	-107.81772614
2.1094 -108.58020973	973	-108.33788681	-108.11937724	-108.31785011	-108.04117966	-107.84600639
2.0315 -108.56740284	1 87	-108.28355122	-108.09807873	-108.28002180	-108.01760006	-107.83875751

TABLE II - TOTAL EMERCIES OF DIFFERENT STATES OF CO MOLECULE AT VARIOUS INTERNUCLEAR DISTANCES

B ² ∑ (CO ⁺)	-111.42243862 -111.45487213	-111.47964859	-111.49787331	-111.51057243	-111.51859188	-111.52266884	-111.52353287	-111.52169418	-111-51773167		-111.71213204	-111.50533485	-111.49762440	-111.48933601	-111.48070717	-111.47183132	-111.46261311	-111.45306969	-111.44330311	-111.43299675
A ² п (со ⁺)				-111.78398895	-111.80711Z69	-111.82560539	-111.84011650	-111.85105324	-111.85912238		- 111.89±05.111.	-111.86773300	-111.86907482	91651393.111-	-111.86703491	-111.86421871	-111.86032772	-111.85550777	-111.8503997	111.84469986
x ² \(\tau\) (co ⁺)	-111.78087902	-111.83583450	-111.85273170	-111.86396408	-111.87039852	-111.87267712	-111.87201118	-111.86835098	-111.86255360		-111.87496330	-111.84608841	-111.83613110	-111.82550240	-111.81435966	-111.80296421	-111.79129505	-111.77958488	-111.76816273	-111.7568362
c ² Σ (co ⁺)		41578897.011-	-110.83036613	-110,86468315	-110.89357662	-110.91785812	-110.93803787	-110.95444298	-110.96789074		-110.97831154	-110.98631859	-110,99185658	-110.99520874	-110,99636650	-110,99544621	-110.99233150	-110.9870s869	-110.98032475	-110.97213364
x 1 2 (co)	-115.23902798	-112.31681442	-112.33207321	-112,34168434	-112.34640408	-112.34704590	-112.34418869	-112.33818436	-112.32978153		-112.31916526	-112,30690193	-112.29314895	-112.27814102	-112.26219940	-112.24554920	-112.22819042	-112.21033096	-112.19238758	112.17424583
3 4 (00)	-111.89608574	-111.94694138	-111.99008560	-112.02656937	-112.05714130	-112.08272362	-112.10388184	-112.12103271	-112.13495731		-112,14583397	-112.15419960	-112.16026592	-112,16435432	-112.16669083	-112,16752929	-112.16697788	-112.16510201	-112.16249371	-112-15889549
3 п (со)	-111.97424603	-112.05291748	-112,08070755	-112.10238266	-112,11864948	-112.13039207	-112.13831711	-112.14287376	-112.14478207		-112.14426422	-112.14194870	-112.13806438	-112,13303375	-112.12682152	-11e.11972304	-112.11221027			
æ	1.95	8.8	2.05	2.10	2.15	8	2.23	2.30	2.35	(0 1 .0	2.45	2.50	2.55	2.60	2.65	2.70	2.73	2.80	2.65

TABLE III EQUILIBRIUM DIATANCES (Re) OF THE VARIOUS ELECTRONIC STATES OF N $_2$ MOLECULE IN ATOMIC UNITS (a.u.)

	RQU	ILIBRIUM DISTANCE	
STATE	CALCULATED	OBSKRVED	°/o error
M ₂ X ¹ Z _g ⁺	2.15	2,0675	3.99 ⁰ /o
$A^3 \Sigma_u^+$	2.48	2.4435	1.49°/o
³ п _и	2.20	2.1699	1.39°/o
3 _{II} g	2.34	2.2910	2.14 ⁰ /o
N ⁵ X S Σ ^g	2.23	2.1094	5.72°/0
Β ² Σ _u ⁺	2.11	2.0315	3.86°/o

TARIZ IV
EQUILIBRIUM DISTANCES OF THE VARIOUS ELECTRONIC STATES
OF CO MOLECULE IN ATOMIC UNITS (a.u.)

	EQUI	LIBRIUM DISTANCE	
STATE	CALCULATED	OBSKRVED	°/o ERROR
CO X 1 X+	2.18	2.132	2.250/0
. а 3 п	2.365	2.2853	3.49°/o
a ³ A	2.65	2.5888	2.36°/o
so ₊ x ₅ s ₊	2.21	2.1072	4.87°/o
A ² II ₁	2.51	2.3502	6.79°/o
B 2 E+	2.24	2.2085	1.420/0
c ₅ Σ+	2.60	•	

The computed total energies of the states of 0_2 are given in Table V and those of NF in Table VI. The calculated equilibrium distances from the above data are given in Table VII for states of 0_2 molecule along with observed data.

The predicted equilibrium distances of the states of NV along with excitation and ionization energies are given in Table VIII. The above results are preliminary. A more complete study using the best MO's (where both the linear coefficients and orbital exponents are varied) is under way. The complete results will be described in the next report.

(3) DEVELOPMENT OF THE COMPUTER PROGRAM FOR THE VARIATION OF THE SCREENING CONSTANTS OF THE 1s, 2s AND 2p ATOMIC ORBITALS TO OBTAIN BEST LCAO MO'S FOR THE DIFFERENT ELECTRONIC STATES OF DIATOMIC HOMOPOLAR MOLECULES by R. C. Sahni and C. D. La Budde

built up which computes wave functions and total energies of homopolar distomic molecules. This program can compute six to seven states of the same molecule in 3 - 4 minutes in a single rum. The program uses fixed screening constants as an input data. It is usual to use Slater screening constants. In order to get the best wave functions and total energies it is necessary to vary the screening constants to optimize the total energy. Such a program has been constructed and a number of states of N₂ and O₂ have been computed. The total energies of these states are given in Table IX along with those computed by using only Slater's screening constants. In all cases best ICAO MO's give better results.

(4) DEVELOPMENT OF THE COMPUTER PROGRAMS FOR THE VARIATION OF THE SCREENING CONSTANTS OF THE 1s. 2s AND 2p ATOMIC ORBITALS TO OBTAIN BEST ICAO MO'S FOR THE DIFFERENT ELECTRONIC STATES OF DIATOMIC HETEROPOLAR MOLECULES by C. D. In Builde and R. C. Sahmi

An 'suto vary' program has been built up which varies the screening constants of the different atomic orbitals of heteropolar molecules till the optimized energy is obtained. This program is more complicated than a similar program for homopolar molecules. This program has been used to calculate the

Table v total energies of states of o_2 molecule at various ${\bf r}$

	$\alpha = 7.6526$	$\beta = \gamma = 8 = 2.$	275	1
R	ο ₂ ³ Σ ⁻ g	0 ₂ 1 Δ	0 ₂ 4 II	o ₂ 2 _{II}
2.00	-149.02007866	-148.93554115	-148.48109627	-148.66397476
2.05	-149.04732704	-148.96336937	-148.53122520	-148.68243599
2.10	-149.06742668	-148.98403314	-148.57303238	-148.69430542
2.15	-149.08137894	-148.99849701	-148.60758781	-148.70056343
2.20	-149.09014702	-149.00779533	-148.63587379	-148.70213509
2.25	-149.09440804	-149.01255989	-148.65863800	-148.69966125
2.30	-149 .0 9491158	-149.01353455	-148.67663765	-148.69385719
2.35	-149.09214592	-149.01122856	-148.69046211	-148.68519783
2.40	-149.08661842	-149.00615120	-148.70061684	-148.67414665
2.45	-149.07877731	-148.99873161	-148.70763397	-148.66114235
2.50	-149.06890488	-148.98927879	-148.71180344	-148.64645576
2.55	-149.05746460	-148.97822571	-148.71364784	-148.63051987
2.60	-149.04456902	-148.96571732	-148.71332932	-148.61343002
2.65	-149.03048897	-148.95200157	-148.71114159	-148.59544945
2.70	-149.01558113	-148.93743706	-148.70748901	-148.57689476
2.28170	-149.09510422	-149.01355362	-148.67054176	-148.69631004
2.29705	-149.09498596	-149.01357651	-148.67571831	-148.69429779
2.12163	-149.07416344	-148.99098587	-148.58880615	-148.69765663
2.61025	-149.04183960	-148.96305084	-148.71307755	-148.60987091

TOTAL ENERGIES OF STATES OF MF AT VARIOUS R

TABLE VI

INTERNUCLEAR		TOTAL ENERGIES	(ATOMIC UNITS)	
DISTANCE (R) (ATOMIC UNITS)	MF X 3 E	mp 1 a	mp ^{+ 2} II	MP+ 4 II
2.00	-153.0760	-152,9849	-152.7468	-152,4587
2.20	-153.1754	-153.0842	-152.8141	-152.6454
2.25	-153.1877	-153.0965	-152.8194	-152.6773
2.30	-153.1963	-153.1051	-152.8214	-152.7048
2.35	-153.2011	-153.1101	-152.8197	-152.7282
2.40	-153.2044	-153-1135	-152.8175	-152.7484
2.45	-153.2046	-153-1138	-152.8121	-152.7653
2.50	-153,2026	-153.1120	-152.8049	-152.7793
2.55	-153.1991	-153.1087	-152.7965	-152.7911
2.60	-153.1939	-153.1039	-152.7866	-152.8007
2.80	-153.1619	-153.0740		-152.8224
2.85	-153.1508	-153.0638		-152.8235
2.90	-153-1398	-153.0538		-152.8248
2.95		-153.0432		-152.8242
3.00		-153.0329		-152.8235

Table VII equilibrium distances of the various states of o_2 molecule in atomic units (a.u.)

	equilierium distance (a.u.)					
STATE	CALCULATED	OBSERVED	o/o error			
o ₂ x ³ E _g	2. 28	2.28170	 .			
a l A g	2.29	2.29705				
o ⁵	2.19	2.1216	3.22 ⁰ /o			
a ⁴ II u	2.57	2.6103	1.540/0			

TABLE VIII

PREDICTED EQUILIERIUM DISPANCES OF THE VARIOUS STATES
OF MF MOLECULE ALONG WITH PREDICTED IONIZATION AND
EXCITATION ENERGIES

STATE	Calculated equilibrium Distances (a.u.)	VERTICAL IONIZATION AND EXCITATION ENERGIES (eV)
mr ³ Σ	2.# \	*Controls
1 4	2.43	2.47
NF ⁺ 2 _{II}	2,30	10.65
4п	2. 89	12.04

TOTAL ENERGIES AS WELL AS IONIZATION AND EXCITATION ENERGIES OF THE DIFFERENT STATES OF n_2 AND o_2 MOIECULES AT R=2.0675 a.u. AND R=2.28167 a.u. RESPECTIVELY

TABLE IX

	TOTAL EMERGIES IN (a.u.)		IONIZATION OR EXCITATION ENERGIES IN e.V.		
STATES	SIATER'S SET	BEST ICAO MO'S	SIATER'S SET	BEST LCAO MO's	OBSERVED
N ₂ 1 Σ _g	-108.5736	-108.6335	_	_	
A ³ Σ _u +	-108.3091	-108.3665	7.19	7.265	7.70
B ³ ng	-100.2983	-108.3357	8.103	8.21	8.12
c ³ II _u	-108.1085	-108.1587	12.92	12.78	11.85
n ⁵ x ₅ Σ ⁶	-108.0294	-108.0762	15.16	15.81	15.576
x² Σu+	-107.8432	-107.9207	19.40	19.99	18.72
o ₂ x ³ Σ _g	-149.0921	-149.1173	_	_	********
a l Ag	-149.0105	-149.0375	2.22	2.17	1.0
о <mark>5 х ₅ п^в</mark>	-148.6941	-148.7116	11.04	11.93	12.2
a ⁴ II _u	-148.6682	-148.6707	12:15	13.07	16.1

TOTAL EMERGIES AS WELL AS IONIZATION AND EXCITATION EMERGIES OF THE DIFFERENT STATES OF CO, NO AND CN MOLECULES AT R=2.132 e.u., R=2.17472 e.u. AND R=2.21441 e.u. RESPECTIVELY

TABLE X

STATES	TOTAL ENERGIES IN (a.u.)		IONIZATION OR EXCITATION EMERGIES IN e.V.		
	Slater's set	HEST ICAO MO's	SLATER'S SET	HEST LCAO MO'S	OBSERVED
co x ¹ Σ ⁺	-112.3436	-112.3924			
a 3 II	-112.1118	-112.1438	6.31	6.76	6.33
a ³ A	-112.0450	-112.0923	8.12	8.16	9.55
co ₊ s E ₊	-111.8676	-111.9070	12.95	13.21	14.00 ₉
A 2 II	-111.7982	-111.8662	14.84	14.32	16.58
BED	-111.5152	-111.5556	22.54	22.77	19.69
c 2 Σ	-110.8832	-110.9446	39.73	39.396	
No x 2 II	-128.7983	-128.8401	_	_	
No ⁺ x ¹ E ⁺	-128.4772	-126.5286	8.74	8.476	9.25
CM X 2	- 91.91 0 8	- 91.9500			
A 2 II	- 91.8924	- 91.9338	.501	.440	1.30
CM ⁺ X ¹ E	- 91.3744	- 91.3917	14.595	15.191	
CM X 1 E	- 91.9147		106	_	_

total energies of a number of states of CO, NO and CN. The results are given in Table X along with those calculated by using Slater's screening. In all cases best ICAO MO's give better results.

(5) THE POTENTIAL ENERGY CURVES AND VIERATIONAL WAVE FUNCTIONS OF DIATOMIC MOLECULES

by D. C. Jain

(a) Rydberg-Klein-Rees Potential Energy Curves

The RKR method is very useful for calculating the realistic potential energy curves of diatomic molecules. The approximate expressions given by Singh and Jain (1962a) are quite convenient to use and are known to yield sufficiently accurate and consistent results. This is apparent from the results published by Singh and Jain (1962b,c;1964a,b). Thus a program RKR MRHL XP has been written for calculating the RKR curves by using Singh and Jain's expressions. The program computes the RKR curves from experimental data and compares them graphically with the Morse, the Hulburt-Hirschfelder and the Lippincott functions. Thus the performance of these potential functions can be checked and the relative positions of the RKR potential curves with respect to these potential functions determined. However, the method of numerical integration of Klein's equations is the most accurate one for obtaining the RKR curves. Therefore, two programs have been constructed for the purpose. One of them (RKV) uses the technique suggested by Weissman, Vanderslice and Battino (1963) for avoiding the singularity in the original equations and the other one (RKG) uses the technique of Guassian integration in the vicinity of the singularity.

The program RKR MRHL XP has been used for computing the potential energy curves of various electronic states of alkali molecules and of C_2 molecule. The programs RKV and RKG have been checked by calculating the potential energy curves of the X 1 Σ_g^+ state of H_2 , X 1 Σ_g^+ state of H_2 and B 3 Σ_u^- state of O_2 molecule and it has been found that the results obtained by the two methods are in good agreement.

(b) Vibrational Wave Functions Appropriate to RKR Potential Energy Curves

Jain and Sah (1962) and Jain (1964b) found that the WKB method yields sufficiently accurate vibrational wave functions. Thus a program PSI VIB TP has been written for computing the vibrational wave functions appropriate to the RKR potential energy curves. It uses the WKB expressions. The solutions involving the Bessel functions are used in the region of the turning points. The wave functions are plotted by the SC 4020 machine. These are used for calculating the rotational constant B, for various vibrational levels. These results can then be compared with

the experimental values of B_v . Preliminary results indicate that in the case of the $X \stackrel{1}{\Sigma} \Sigma_g^+$ state of N_2 the values of B_v obtained by this procedure agree to about $0.2^{\circ}/o$ with the experimental ones.

A slightly modified form of this program is available which can be used for obtaining the values of the vibrational and rotational constants using the theoretical potential energy curves calculated from first principles.

(c) Vibrational Wave Functions Appropriate to the Morse, the Hulburt-Hirschfelder and the Lippincott Functions

The Morse, the Hulburt-Hirschfelder or the Lippincott potential energy functions may be found to be quite adequate for representing the potential energy curves of certain electronic states. Thus it would be more convenient to use these potential functions for obtaining the vibrational wave functions in those cases. The program PSI VIB WKB has been constructed with this end in view. It calculates the vibrational wave functions appropriate to these potential functions and plots them using the SC4020 machine. These wave functions will be useful for computing the Franck-Condon factors and r-centroids for the band systems involving such electronic states whose potential energy curves can be adequately represented by any of these potential energy functions.

REFERENCES

Singh, N. L. and Jain, D. C., 1962a, Proc. Phys. Soc., 79, 274.

Singh, M. L. and Jain, D. C., 1962b, Proc. Phys. Soc., 79, 753.

Singh, N. L. and Jain, D. C., 1962c, Can. J. Phys., 40, 520.

Jain, D. C., 1964a, Proc. Phys. Soc., 83, 17.

Jain, D. C., 1964b, J. Quant. Spectroscopy and Radiative Transfer, 4, 427.

Weissman, S., Vanderslice, J. T. and Battino, R., 1963, J.Chem.Phys., 39, 2226.

Jain, D. C. and Sah, P., 1962, Proc. Phys. Soc., 80, 525.

Jain, D. C., 1963, Proc. Phys. Soc., 81, 171.

Table VII Equilibrium distances of the various states of o_2 molecule in atomic units (a.u.)

EQUILIERIUM DISTANCE (a.u.)						
STATE	CALCULATED	OBSERVED	o/o error			
ο ₂ x ³ Σ _g	2.28	2.28170				
a l A g	2.29	2.29705				
0,2 X 2 II B	2.19	2.1216	3.22 ⁰ /o			
a ⁴ II u	2.57	2.6103	1.54°/o			

PREDICTED EQUILIERIUM DISTANCES OF THE VARIOUS STATES
OF MF MOLECULE ALONG WITH PREDICTED IONIZATION AND
EXCITATION ENERGIES

STATE	Calculated equilibrium Distances (a.u.)	VERTICAL IONIZATION AND EXCITATION ENERGIES (eV)
MP 3 E	5.44	
1 Δ	2.43	2.47
NF ⁺ 2 _{II}	2.30	10.65
μп	2.89	12.04

TOTAL ENERGIES AS WELL AS IONIZATION AND EXCITATION ENERGIES OF THE DIFFERENT STATES OF N₂ AND O₂ MOLECULES AT R=2.0675 a.u. AND R=2.28167 a.u. RESPECTIVELY

TABLE IX

	TOTAL EMERGIES IN (a.u.)		IONIZATION OR EXCITATION EMERGIES IN e.V.		
STATES	SIATER'S SET	BEST ICAO MO'S	SIATER'S SET	BEST ICAO MO'S	OBSERVEI
N ₂ ¹ Σ _g	-108.5736	-108.6335	_	_	-
$A^3 \Sigma_u^+$	-108.3091	-108.3665	7.19	7.265	7.70
B 3 ng	-100.2983	-108.3357	8.103	8.21	8.12
c ³ n _u	-108.1085	-108.1587	12.92	12.78	11.25
M ² X ² Σ ⁶	-106.0294	-108.0762	15.16	15.81	15.576
$\mathbf{x^2} \; \mathbf{\Sigma_u^+}$	-107.8432	-107.9207	19.40	19.99	18.72
o ₂ x ³ Σ _g	-149. 0 921	-149.1173	_		**Appendix
a l A	-149.0105	-149.0375	2,22	2.17	1.0
0 ² x ² II _g	-148.6941	-148.7116	11.04	11.93	12.2
a 4 nu	-148.6682	-148.6707	12.15	13.07	16.1

TOTAL EMERGIES AS WELL AS IONIZATION AND EXCITATION KNERGIES OF THE DIFFERENT STATES OF CO, NO AND CN MOLECULES AT R = 2.132 a.u., R = 2.17472 a.u. AND R = 2.21441 a.u. RESPECTIVELY

TABLE X

	TOTAL EMERGIES IN (a.u.)		IONIZATION OR EXCITATION EMERGIES IN e.V.		
STATES	SLATER'S SET	HEST ICAO MO's	SLATER'S SET	BEST ICAO MO'S	OBSERVED
co x ¹ Σ ⁺	-112.3436	-112.3924			
a 3 n	-112.1118	-112.1438	6.31	6.76	6.33
a ³ Δ	-112.0450	-112.0923	8.12	8.16	9.55
co+ z z+	-111.8676	-111.9070	12.95	13.21	14.009
A ² II	-111.7982	-111.8662	14.84	14.32	16.58
Β 2 Σ	-111.5152	-111.5556	22.54	22.77	19.69
c ₅ Σ	-110.8832	-110.9446	39.73	39.396	
No x 2 II	-128.7983	-128.8401	_	_	
NO ⁺ X ¹ Σ ⁺	-128.4772	-126.5286	8.74	8.476	9.25
CM X S Z	- 91.91 0 8	- 91.9500			
A ² II	- 91.8924	- 91.9338	.501	.440	1.30
CM+ X 1 E	- 91.3744	- 91.3917	14.595	15.191	
CM* X 1 E	- 91.9147	_	106	_	-

total energies of a number of states of CO, NO and CN. The results are given in Table X along with those calculated by using Slater's screening. In all cases best ICAO MO's give better results.

(5) THE POTENTIAL ENERGY CURVES AND VIERATIONAL WAVE FUNCTIONS OF DIATOMIC MOLECULES by D. C. Jain

(a) Rydberg-Klein-Rees Potential Energy Curves

The RKR method is very useful for calculating the realistic potential energy curves of diatomic molecules. The approximate expressions given by Singh and Jain (1962a) are quite convenient to use and are known to yield sufficiently accurate and consistent results. This is apparent from the results published by Singh and Jain (1962b,c;1964a,b). Thus a program RKR MHHL XP has been written for calculating the RKR curves by using Singh and Jain's expressions. The program computes the RKR curves from experimental data and compares them graphically with the Morse, the Hulburt-Hirschfelder and the Lippincott functions. Thus the performance of these potential functions can be checked and the relative positions of the RKR potential curves with respect to these potential functions determined. However, the method of numerical integration of Klein's equations is the most accurate one for obtaining the RKR curves. Therefore, two programs have been constructed for the purpose. One of them (RKV) uses the technique suggested by Weissman, Vanderslice and Battino (1963) for avoiding the singularity in the original equations and the other one (RKG) uses the technique of Gusssian integration in the vicinity of the singularity.

The program RKR MHHL XP has been used for computing the potential energy curves of various electronic states of alkali molecules and of C_2 molecule. The programs RKV and RKG have been checked by calculating the potential energy curves of the X 1 Σ_g^+ state of H_2 , X 1 Σ_g^+ state of H_2 and B 3 Σ_u^- state of O_2 molecule and it has been found that the results obtained by the two methods are in good agreement.

(b) Vibrational Wave Functions Appropriate to RKR Potential Energy Curves

Jain and Sah (1962) and Jain (1964b) found that the WKB method yields sufficiently accurate vibrational wave functions. Thus a program PSI VIB TP has been written for computing the vibrational wave functions appropriate to the RKR potential energy curves. It uses the WKB expressions. The solutions involving the Bessel functions are used in the region of the turning points. The wave functions are plotted by the SC 4020 machine. These are used for calculating the rotational constant B_v for various vibrational levels. These results can then be compared with

i

the experimental values of B_v . Preliminary results indicate that in the case of the $X \stackrel{1}{\Sigma}_g^+$ state of N_2 the values of B_v obtained by this procedure agree to about $0.2^{\circ}/\circ$ with the experimental ones.

A slightly modified form of this program is available which can be used for obtaining the values of the vibrational and rotational constants using the theoretical potential energy curves calculated from first principles.

(c) Vibrational Wave Functions Appropriate to the Morse, the Hulburt-Hirschfelder and the Lippincott Functions

The Morse, the Hulburt-Hirschfelder or the Lippincott potential energy functions may be found to be quite adequate for representing the potential energy curves of certain electronic states. Thus it would be more convenient to use these potential functions for obtaining the vibrational wave functions in those cases. The program PSI VIB WKB has been constructed with this end in view. It calculates the vibrational wave functions appropriate to these potential functions and plots them using the SC4020 machine. These wave functions will be useful for computing the Franck-Condon factors and r-centroids for the band systems involving such electronic states whose potential energy curves can be adequately represented by any of these potential energy functions.

REFERENCES

Singh, N. L. and Jain, D. C., 1962a, Proc. Phys. Soc., 79, 274.

Singh, N. L. and Jain, D. C., 1962b, Proc. Phys. Soc., 79, 753.

Singh, N. L. and Jain, D. C., 1962c, Can. J. Phys., 40, 520.

Jain, D. C., 1964a, Proc. Phys. Soc., 83, 17.

Jain, D. C., 1964b, J. Quant. Spectroscopy and Radiative Transfer, 4, 427.

Weissman, S., Vanderslice, J. T. and Battino, R., 1963, J.Chem.Phys., 39, 2226.

Jain, D. C. and Sah, P., 1962, Proc. Phys. Soc., 80, 525.

Jain, D. C., 1963, Proc. Phys. Soc., 81, 171.